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Overview

Plant remote sensing: state of the art

Spectral fingerprinting & hyperspectral imaging
Measuring crop phenotypic traits (eg biomass)
Wish list for future technologies

Phenotyping prototypes



Remote sensing of plants

 What is remote sensing?

“Remote sensing is the acquisition of information about
an object or phenomenon without making physical
contact with the object and thus in contrast to in

situ observation.” -Wiki
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Common terrestrial remote sensing
technologies

e Passive sensors

Airborne and spaceborne imaging spectrometers (eg
LandSat, AVIRIS, Hyperion, CAQO)

— UV

— Visible
— Near- and short-wave infrared (NIR, SWIR)
— Long-wave infrared (thermal)

— Handheld spectrometer (“proxima

III

sensing)

e Active sensors
— LiDAR
— Radar



Measuring plant chemistry using reflectance spectra
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Comparison of multi- & hyper- spectral reflectance measurements
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Advantages of remotely sensing plants

* Non-destructive
e Can cover large areas
* Repeatability

* Detection of non-visible wavelengths



Measuring leaf area in corn using near-infrared
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Airborne hyperspectral imaging + LiDAR:
mapping leaf chemistry in 3D

Multi-pulse Waveform LiDAR
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Airborne hyperspectral imaging and
: mapping leaf chemistry in 3D

Carnegie Institute for Science




Comparison of multi- & hyper- spectral reflectance measurements
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20 leaf chemical measured in the lab and correlated to

field hyperspectral measurements
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Challenges of remotely sensing plants

e Separation of soil and other non-vegetative
components

* Atmospheric effects

e Variable illumination and viewing geometry
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Example crop traits relevant to biofuels and commonly
associated field and remote sensing metrics

Plant trait Field metric Remote sensing
Leaf biomass Harvest, dry, NDVI, other
weigh multispectral

Woody biomass Allometry + stem | LiDAR height
D, H

Leaf nitrogen Chemical assay Multispectral
SPAD

Leaf water content Weigh/harvest/ SWIR
oven-dry/weigh hyperspectral



Measuring woody biomass of

individual trees using airborne LiDAR

Harvested tree mass (kg)
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Wish lists for future
crop phenotyping technologies

* Currently challenging / impossible to remotely
sense soil moisture, N, P, texture at depth

* Root imaging to better understand how crops
partition resources

* Plant-by-plant imaging of breeding trial plots to
observe intra-plot variance, improve trait
estimation, and enable more plots



Blue River Technology: bringing machine vision
& robotics to agriculture




Advanced field-based phenotyping at Blue River
Technology: image capture and processing
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